I'M PROSEIDON - THE NEW HYPERPOLARIZED FLAVOR

-THE PROTON FLAVOR-

Proseidon is our new First-Generation Bench-Top Hyperpolarization Device. After fiver years of development, we are now ready to offer you this extraordinary research device.

Propane Polarization 2.JPG

JOIN THE FUTURE OF HYPERPOLARIZATION IMAGING

-Inexpensive - Fast - Simple - Reliable - Reproducible-

Price: €29,000

SPECIFICATIONS / FEATURES:

  • Production Rate: 0.15 Standard Liters/ second for up to maximum of 10 seconds per batch/cycle.

  • Production Quantity: From 0.3L to 3L per Cycle.

  • Proton-hyperpolarized propane (two protons after pairwise addition to CH2 and CH3): 1% (now) and potentially more in the future with the development of a more advanced catalysts.

  • Can be used on MRI scanners 0.35 T and below in long-lived form, and on any other MRI scanner in conventional form

  • Operational Requirements:

    • Supply of Parahydrogen and Propylene.  (Parahydrogen generator is not supplied with this polarizer).

    • Flammable Gas use Certification may be required.

  • Bench Top Device. Approximate Dimensions: 18"x12"x6"

  • Available in 110V and 220V Configurations

  • Up to 1,000 cycles or two years of operation (whichever comes first) on a single catalyst cartridge.

  • This is not a Biomedical Device.

Pairwise Addition.JPG

Liquid Nitrogen Para-Hydrogen Generator

Up to 50% Para-Hydrogen Enrichment

  • Designed to be submerged in a liquid Nitrogen.

  • Copper Wound Para-Hydrogen Converter packed with Iron Oxide Catalyst. 

  • Operated with Ultra High Purity Hydrogen Gas (>99.999%).

  • Operating Pressure: Up to 500 PSI

  • Flow Rate: Up to 20 Standard Liters Per Minute(III

Price: €3,300

REFERENCES / CITED WORK:

1) Kovtunov, K. V.; Barskiy, D. A.; Coffey, A. M.; Truong, M. L.; Salnikov, O. G.; Khudorozhkov, A. K.; Inozemtseva, E. A.; Prosvirin, I. P.; Bukhtiyarov, V. I.; Waddell, K. W.; Chekmenev, E. Y.; Koptyug, I. V. High-Resolution 3d Proton Hyperpolarized Gas Mri Enabled by Parahydrogen and Rh/Tio2 Heterogeneous Catalyst. Chem. Eur. J. 2014, 20, 11636 – 11639.

Link:  https://onlinelibrary.wiley.com/doi/full/10.1002/chem.201403604

2) Kovtunov, K. V.; Truong, M. L.; Barskiy, D. A.; Koptyug, I. V.; Coffey, A. M.; Waddell, K. W.; Chekmenev, E. Y. Long-Lived Spin States for Low-Field Hyperpolarized Gas Mri. Chem. Eur. J. 2014, 20, 14629–14632.

Link: https://onlinelibrary.wiley.com/doi/full/10.1002/chem.201405063

3) Kovtunov, K. V.; Truong, M. L.; Barskiy, D. A.; Salnikov, O. G.; Bukhtiyarov, V. I.; Coffey, A. M.; Waddell, K. W.; Koptyug, I. V.; Chekmenev, E. Y. Propane-D(6) Heterogeneously Hyperpolarized by Parahydrogen. J. Phys. Chem. C 2014, 118, 28234-28243.

Link: https://pubs.acs.org/doi/10.1021/jp508719n

4) Salnikov, O. G.; Barskiy, D. A.; Coffey, A. M.; Kovtunov, K. V.; Koptyug, I. V.; Chekmenev, E. Y. Efficient Batch-Mode Parahydrogen-Induced Polarization of Propane. ChemPhysChem 2016, 17, 3395–3398.

Link: https://onlinelibrary.wiley.com/doi/10.1002/cphc.201600564

5) Barskiy, D. A.; Kovtunov, K. V.; Gerasimov, E. Y.; Phipps, M. A.; Salnikov, O. G.; Coffey, A. M.; Kovtunova, L. M.; Prosvirin, I. P.; Bukhtiyarov, V. I.; Koptyug, I. V.; Chekmenev, E. Y. 2d Mapping of Nmr Signal Enhancement and Relaxation for Heterogeneously Hyperpolarized Propane Gas. J. Phys. Chem. C 2017, 121, 10038–10046.

Link: https://pubs.acs.org/doi/abs/10.1021/acs.jpcc.7b02506

6) Barskiy, D. A.; Salnikov, O. G.; Romanov, A. S.; Feldman, M. A.; Coffey, A. M.; Kovtunov, K. V.; Koptyug, I. V.; Chekmenev, E. Y. Nmr Spin-Lock Induced Crossing (Slic) Dispersion and Long-Lived Spin States of Gaseous Propane at Low Magnetic Field (0.05 T). J. Magn. Reson. 2017, 276, 78-85. Link: https://www.sciencedirect.com/science/article/pii/S1090780717300216?via%3Dihub

7) Burueva, D. B.; Romanov, A. S.; Salnikov, O. G.; Zhivonitko, V. V.; Chen, Y.-W.; Barskiy, D. A.; Chekmenev, E. Y.; Hwang, D. W.-H.; Kovtunov, K. V.; Koptyug, I. V. Extending the Lifetime of Hyperpolarized Propane Gas Via Reversible Dissolution. J. Phys. Chem. C 2017, 121, 4481–4487.

Link: https://pubs.acs.org/doi/10.1021/acs.jpcc.7b00509

8) Barskiy, D. A.; Coffey, A. M.; Nikolaou, P.; Mikhaylov, D. M.; Goodson, B. M.; Branca, R. T.; Lu, G. J.; Shapiro, M. G.; Telkki, V.-V.; Zhivonitko, V. V.; Koptyug, I. V.; Salnikov, O. G.; Kovtunov, K. V.; Bukhtiyarov, V. I.; Rosen, M. S.; Barlow, M. J.; Safavi, S.; Hall, I. P.; Schröder, L.; Chekmenev, E. Y. Nmr Hyperpolarization Techniques of Gases. Chem. Eur. J. 2017, 23, 725–751.

Link: https://onlinelibrary.wiley.com/doi/full/10.1002/chem.201603884

9) Hövener, J.-B.; Pravdivtsev, A. N.; Kidd, B.; Bowers, C. R.; Glöggler, S.; Kovtunov, K. V.; Plaumann, M.; Katz-Brull, R.; Buckenmaier, K.; Jerschow, A.; Reineri, F.; Theis, T.; Shchepin, R. V.; Wagner, S.; Bhattacharya, P.; Zacharias, N. M.; Chekmenev, E. Y. Parahydrogen-Based Hyperpolarization for Biomedicine. Angew. Chem. Int. Ed. 2018, 57, 11140-11162.

Link: https://onlinelibrary.wiley.com/doi/full/10.1002/anie.201711842

10) Salnikov, O. G.; Kovtunov, K. V.; Nikolaou, P.; Kovtunova, L. M.; Bukhtiyarov, V. I.; Koptyug, I. V.; Chekmenev, E. Y. Heterogeneous Parahydrogen Pairwise Addition to Cyclopropane. ChemPhysChem 2018, 19, 2621-2626.

Link: https://onlinelibrary.wiley.com/doi/full/10.1002/cphc.201800690