top of page

Closed Cycle Cryostat

This advanced Para-Hydrogen Generator will meet all your needs ranging from high-resolution NMR studies all the way to clinical trials.

This system allows cooling to liquid helium temperatures without the use of cryogens. The only requirements are water cooling for the compressor.

​

Optional Items for this unit are:

Complete Vacuum Pumping System (Required for system operation - User can use their own if available):

  • Two stage, Rotary Vane, Vacuum Pump 5.5 m3/hr.,

  • 1 Meter stainless bellows Hose.

  • Vacuum Gauge, thermocouple.

  • Vacuum valve with backfill feature

  • Oil back streaming trap.

  • Oil Mist Eliminator.

A Turbo Pump system is also available.

CoolPac System:
Provides air cooling to the ARS-4HW compressor's water cooling loop

ARS Parahydrogen Generator

Advance Research Systems (ARS) Closed Cycle Cryostat Para-Hydrogen Generator

Highly Recommended: Storage and Distribution System

The ARS Para-hydrogen generator has a 2 hour start up and 2 hour shut down time. This may not be ideal for daily operations using this system. By using our Storage and Distribution system, the user can focus on producing and storing Para-hydrogen early in the week, then use the gas stored in the 2 gas cylinders of the distribution system for experimentation for the remainder of the week.

Key Features:

Up to 99% Para-Hydrogen Enrichment

  • Crysostat cooling in 2 stages.

  • Catalytic Chamber packed with Iron Oxide or Charcoal Catalyst.

  • Operated with Ultra High Purity Hydrogen Gas (>99.999%).

  • Operating Pressure: Up to 500 -750 PSI

  • Flow Rate: Up to 4 Standard Liters Per Minute

  • Different Configurations and Equipment Options Available.

  • Robust and User Friendly Operation. Can Operate in any orientation.

  • Consumable Cost Efficiency enabled by closed cycle operation of Liquid Helium. 

Price Starting at: €57,000 VAT Excluded*

Price Updated: 13/02/24. (Price is subject to change without warning)

Pricing also available in $US Dollars

*Customers are responsible for local VAT and Duty in country of destination

Data Sheet

Operations Manual

Technical Manual

​

This generator model has been employed in a number of previously published studies cited below.

REFERENCES / CITED WORK:

​

1)Benjamin Chapman, Baptiste Joalland, Collier Meersman, Jessica Ettedgui, Rolf E Swenson, Murali C Krishna, Panayiotis Nikolaou, Kirill V Kovtunov, Oleg G Salnikov, Igor V Koptyug, Max E Gemeinhardt, Boyd M Goodson, Roman V Shchepin, Eduard Y Chekmenev. Low-Cost High-Pressure Clinical-Scale 50% Parahydrogen Generator Using Liquid Nitrogen at 77 K. 2021, 93 (24), 8476-8483

Link:https://doi.org/10.1021/acs.analchem.1c00716

​

2)Baptiste Joalland, Shiraz Nantogma, Md Raduanul Chowdhury, Panayiotis Nikolaou, Eduard Y Chekmenev. Magnetic shielding of parahydrogen hyperpolarization experiments for the masses. 2021

Link:https://doi.org/10.1002/mrc.5167

​

3)Oleg G Salnikov, Panayiotis Nikolaou, Nuwandi M Ariyasingha, Kirill V Kovtunov, Igor V Koptyug, Eduard Y Chekmenev. Clinical-scale batch-mode production of hyperpolarized propane gas for MRI. 2019, 91 (7), 4741-4746

Link:https://doi.org/10.1021/acs.analchem.9b00259

​

4)Oleg G Salnikov, Kirill V Kovtunov, Panayiotis Nikolaou, Larisa M Kovtunova, Valerii I Bukhtiyarov, Igor V Koptyug, Eduard Y Chekmenev. Cover Feature: Heterogeneous Parahydrogen Pairwise Addition to Cyclopropane (ChemPhysChem 20/2018). 2018, 19 (20), 2599-2599

Link:https://doi.org/10.1002/cphc.201800842

​

5)Oleg G Salnikov, Kirill V Kovtunov, Panayiotis Nikolaou, Larisa M Kovtunova, Valerii I Bukhtiyarov, Igor V Koptyug, Eduard Y Chekmenev. Heterogeneous Parahydrogen Pairwise Addition to Cyclopropane. 2018, 19 (20), 2621-2626

Link:https://doi.org/10.1002/cphc.201800690

​

6) Coffey, A. M.; Shchepin, R. V.; Truong, M. L.; Wilkens, K.; Pham, W.; Chekmenev, E. Y. Anal. Chem. 2016, 88, 8279. https://pubs.acs.org/doi/10.1021/acs.analchem.6b02130

​

7) Truong, M. L.; Theis, T.; Coffey, A. M.; Shchepin, R. V.; Waddell, K. W.; Shi, F.; Goodson, B. M.; Warren, W. S.; Chekmenev, E. Y. J. Phys. Chem. C 2015, 119, 8786.

https://pubs.acs.org/doi/10.1021/acs.jpcc.5b01799

​

8) Waddell, K. W.; Coffey, A. M.; Chekmenev, E. Y. J. Am. Chem. Soc. 2011, 133, 97.

https://pubs.acs.org/doi/10.1021/ja108529m

​

9) Barskiy, D. A.; Kovtunov, K. V.; Koptyug, I. V.; He, P.; Groome, K. A.; Best, Q. A.; Shi, F.; Goodson, B. M.; Shchepin, R. V.; Coffey, A. M.; Waddell, K. W.; Chekmenev, E. Y. J. Am. Chem. Soc. 2014, 136, 3322.

https://pubs.acs.org/doi/10.1021/ja501052p

​

10) Feng, B.; Coffey, A. M.; Colon, R. D.; Chekmenev, E. Y.; Waddell, K. W. J. Magn. Reson. 2012, 214, 258.

https://www.sciencedirect.com/science/article/abs/pii/S1090780711004836?via%3Dihub

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3268554/

​

11) Theis, T.; Truong, M. L.; Coffey, A. M.; Shchepin, R. V.; Waddell, K. W.; Shi, F.; Goodson, B. M.; Warren, W. S.; Chekmenev, E. Y. J. Am. Chem. Soc. 2015, 137, 1404.

https://pubs.acs.org/doi/10.1021/ja512242d

bottom of page