XEUS XENON HYPERPOLARIZER
#Never Stop Polarizing
Hyperpolarized (HP) MRI is poised to revolutionize the field of molecular imaging by enabling the tomographic detection of dilute nuclear spin systems with biochemical specificity but without ionizing radiation. In particular, HP gas imaging (e.g. 129Xe, 3He, etc.) has been applied to measure lung function. Developments in the field of 129Xe hyperpolarizer technology, make HP 129Xe an attractive and feasible diagnostic tool for a large variety of potential biomedical, basic research, and clinical applications. The design of the XeUS Gen-4 hyperpolarizer was focused on hardware development and improvement with the goal of complete integration into a fully automated device achieved using an ARM-based SMT32 microcontroller, making the device compact and user-friendly.
Xeus Xenon Polarizer Key Features:
-
The Device has two gas connections. One utilizes a Pre-Mixed (Xe:N2) gas cylinder and the other UHP Nitrogen. This eliminates the need for complex gas handling manifolds with flow controllers. Instead, Pressure controllers are preset to deliver the xenon mixture to the spin-exchange optical pumping (SEOP) cell efficiently and effortlessly.
-
No Cryogen Collection required due to high xenon density of gas mixtures.
-
The Xeus Driver Module Micro-Controller is the Brain to this device with all onboard devices integrated into it via RS232 and RS485 communications, thus enabling robust operational performance for the production of HP Xe-129 via Batch Mode SEOP. Automated and integrated in-situ NMR polarimetry can be conveniently employed for automated device self-calibration. Furthermore, the driver module now also enables automated routine sequences, which utilize the feedback-loop mechanisms from initializing the SEOP process, performing the SEOP process, and finally transferring the HP 129Xe and re-filling the SEOP cell with the next batch of Xe gas.
-
Production yield: 0.8 to 1.2L per 20 - 40min production cycle. User has full control when they want to transfer the HP Xe-129 gas if they are satisfied with the polarization level.
-
In-Situ NMR polarimetry for quality assurance prior to transfer. Polarization build up curve is displayed on the Xeus Driver Module during the SEOP process.
-
On Board Laser Retro-Reflection for 20% Increased Polarization
-
On board NIR Spectroscopy to monitor the SEOP process and the transmission of laser light.
-
Wireless connection to the Polarizer using a WiFi enabled computer allows the user to control the device using a Graphical User Interface.
-
Small footprint: 1.2 m (w) x 1.5 m (h) x 0.6 m (d)
-
Up to 30 to 60% Nuclear Spin Polarization with 50% Xenon Mix depending on condition of the SEOP Cell
Price: €329,000 VAT Excluded*
Price Updated: 13/02/24. (Price is subject to change without warning)
Pricing also available in $US Dollars
*Customers are responsible for local VAT and Duty in country of destination
The following video demonstrated the use of a WiFi Enabled computer to connect the Xeus Xenon Hyperpolarizer and operate it manually via the Graphical User Interface.
The following video demonstrated the use of the Xeus Driver Module to operate automated sequences such as the Initialization, SEOP, and Shut down process, followed with a Timed Polarization Decay measurement.
This video demonstrates the installation of our Pyrex spin-exchange optical pumping cell being installed in the Aluminum Heating / Cooling Jacket on the Xeus Xenon Hyperpolarizer. Thermal Paste is used to thermally mate the Pyrex glass with the Jackets Aluminum body.
Disclaimer
The long-term goal of XeUS Technologies is to develop and provide a clinically approved xenon-129 hyperpolarizer for pulmonary imaging and beyond. Our currently-offered Xenon-129 hyperpolarizer is only for research-use only: i.e. no clearance has been received from the corresponding government regulatory agencies although we do not restrict our customers from seeking regulatory approvals for use in humans (e.g. US IND) on their own or with our help.
REFERENCE / CITED WORK:
1) Jonathan R. Birchall, Md Raduanul H. Chowdhury, Panayiotis Nikolaou ,Yuri A. Chekmenev, Anton Shcherbakov, Michael J. Barlow, Boyd M. Goodson, Eduard Y. Chekmenev. Pilot Quality-Assurance Study of a Third-Generation Batch-Mode Clinical-Scale Automated Xenon-129 Hyperpolarizer. Molecules 2022, 27,1327
Link: https://doi.org/10.3390/molecules27041327
2)Alixander S Khan, Rebecca L Harvey, Jonathan R Birchall, Robert K Irwin, Panayiotis Nikolaou, Geoffry Schrank, Kiarash Emami, Andrew Dummer, Michael J Barlow, Boyd M Goodson, Eduard Y Chekmenev. Enabling Clinical Technologies for Hyperpolarized 129Xenon Magnetic Resonance Imaging and Spectroscopy. 2021, 93 (24), 8476-8483
Link:https://doi.org/10.1002/ange.202015200
3)Alixander S Khan, Rebecca L Harvey, Jonathan R Birchall, Robert K Irwin, Panayiotis Nikolaou, Geoffry Schrank, Kiarash Emami, Andrew Dummer, Michael J Barlow, Boyd M Goodson, Eduard Y Chekmenev. Enabling Clinical Technologies for Hyperpolarized Xenon-129 MRI and Spectroscopy. 2021, 60(41):22126-22147
4)Jonathan R Birchall, Robert K Irwin, Md Raduanul H Chowdhury, Panayiotis Nikolaou, Boyd M Goodson, Michael J Barlow, Anton Shcherbakov, Eduard Y Chekmenev. Automated Low-Cost In Situ IR and NMR Spectroscopy Characterization of Clinical-Scale 129Xe Spin-Exchange Optical Pumping. 2021, 93 (8) 3883-3888
Link:https://doi.org/10.1021/acs.analchem.0c04545
5)Jonathan R Birchall, Robert K Irwin, Panayiotis Nikolaou, Aaron M Coffey, Bryce E Kidd, Megan Murphy, Michael Molway, Liana B Bales, Kaili Ranta, Michael J Barlow, Boyd M Goodson, Matthew S Rosen, Eduard Y Chekmenev. XeUS: A second-generation automated open-source batch-mode clinical-scale hyperpolarizer. 2020, 319, 106813
Link:https://doi.org/10.1016/j.jmr.2020.106813
6)Jonathan R Birchall, Robert K Irwin, Panayiotis Nikolaou, Ekaterina V Pokochueva, Kirill V Kovtunov, Igor V Koptyug, Michael J Barlow, Boyd M Goodson, Eduard Y Chekmenev. Pilot multi-site quality assurance study of batch-mode clinical-scale automated xenon-129 hyperpolarizers. 2020, 316, 106755
Link:https://doi.org/10.1016/j.jmr.2020.106755
7)Jonathan R Birchall, Panayiotis Nikolaou, Robert K Irwin, Michael J Barlow, Kaili Ranta, Aaron M Coffey, Boyd M Goodson, Ekaterina V Pokochueva, Kirill V Kovtunov, Igor V Koptyug, Eduard Y Chekmenev. Helium-rich mixtures for improved batch-mode clinical-scale spin-exchange optical pumping of Xenon-129. 2020, 315, 106739
Link:https://doi.org/10.1016/j.jmr.2020.106739
8)Jason G Skinner, Kaili Ranta, Nicholas Whiting, Aaron M Coffey, Panayiotis Nikolaou, Matthew S Rosen, Eduard Y Chekmenev, Peter G Morris, Michael J Barlow, Boyd M Goodson. High Xe density, high photon flux, stopped-flow spin-exchange optical pumping: Simulations versus experiments. 2020, 312, 106686
Link:https://doi.org/10.1016/j.jmr.2020.106686
9) Jonathan R Birchall, Panayiotis Nikolaou, Aaron M Coffey, Bryce E Kidd, Megan Murphy, Michael Molway, Liana B Bales, Boyd M Goodson, Robert K Irwin, Michael J Barlow, Eduard Y Chekmenev. Batch-mode clinical-scale optical hyperpolarization of Xenon-129 using an aluminum jacket with rapid temperature ramping. 2020, 92 (6) 4309-4316
Link: https://doi.org/10.1021/acs.analchem.9b05051
10) Nikolaou, P.; Coffey, A. M.; Walkup, L. L.; Gust, B. M.; Whiting, N. R.; Newton, H.; Muradyan, I.; Dabaghyan, M.; Ranta, K.; Moroz, G.; Patz, S.; Rosen, M. S.; Barlow, M. J.; Chekmenev, E. Y.; Goodson, B. M. Near-Unity nuclear polarization with an open-source 129Xe hyperpolarizer for NMR and MRI. 2013 110 (35) 14150-14155.
Link: https://doi.org/10.1073/pnas.1306586110
11) Barskiy, D. A.; Coffey, A. M.; Nikolaou, P.; Mikhaylov, D. M.; Goodson, B. M.; Branca, R. T.; Lu, G. J.; Shapiro, M. G.; Telkki, V.-V.; Zhivonitko, V. V.; Koptyug, I. V.; Salnikov, O. G.; Kovtunov, K. V.; Bukhtiyarov, V. I.; Rosen, M. S.; Barlow, M. J.; Safavi, S.; Hall, I. P.; Schröder, L.; Chekmenev, E. Y. Nmr Hyperpolarization Techniques of Gases. Chem. Eur. J. 2017, 23, 725–751.
Link: https://onlinelibrary.wiley.com/doi/full/10.1002/chem.201603884
12) Nikolaou, P.; Coffey, A. M.; Walkup, L. L.; Gust, B. M.; Whiting, N. R.; Newton, H.; Muradyan, I.; Dabaghyan, M.; Ranta, K.; Moroz, G.; Patz, S.; Rosen, M. S.; Barlow, M. J.; Chekmenev, E. Y.; Goodson, B. M. Xena: An Automated 'Open-Source' 129xe Hyperpolarizer for Clinical Use. Magn. Reson. Imaging 2014, 32, 541-550.
Link: https://www.sciencedirect.com/science/article/pii/S0730725X14000459
13) Nikolaou, P.; Coffey, A. M.; Walkup, L. L.; Gust, B.; LaPierre, C.; Koehnemann, E.; Barlow, M. J.; Rosen, M. S.; Goodson, B. M.; Chekmenev, E. Y. A 3d-Printed High Power Nuclear Spin Polarizer. J. Am. Chem. Soc. 2014, 136 1636–1642.
Link: https://pubs.acs.org/doi/abs/10.1021/ja412093d
14) Nikolaou, P.; Coffey, A. M.; Ranta, K.; Walkup, L. L.; Gust, B.; Barlow, M. J.; Rosen, M. S.; Goodson, B. M.; Chekmenev, E. Y. Multi-Dimensional Mapping of Spin-Exchange Optical Pumping in Clinical-Scale Batch-Mode 129xe Hyperpolarizers. J. Phys. Chem. B 2014, 118, 4809–4816.
Link https://pubs.acs.org/doi/abs/10.1021/jp501493k
15) Nikolaou, P.; Coffey, A. M.; Barlow, M. J.; Rosen, M.; Goodson, B. M.; Chekmenev, E. Y. Temperature-Ramped 129xe Spin Exchange Optical Pumping. Anal. Chem. 2014, 86, 8206–8212.
Link: https://pubs.acs.org/doi/10.1021/ac501537w
16) Nikolaou, P.; Coffey, A. M.; Walkup, L. L.; Gust, B. M.; Whiting, N.; Newton, H.; Barcus, S.; Muradyan, I.; Dabaghyan, M.; Moroz, G. D.; Rosen, M.; Patz, S.; Barlow, M. J.; Chekmenev, E. Y.; Goodson, B. M. Near-Unity Nuclear Polarization with an 'Open-Source' 129xe Hyperpolarizer for Nmr and Mri. Proc. Natl. Acad. Sci. U. S. A. 2013, 110, 14150-14155.
Link: https://www.pnas.org/content/110/35/14150.long
17) Whiting, N.; Nikolaou, P.; Eschmann, N. A.; Barlow, M. J.; Lammert, R.; Ungar, J.; Hu, W.; Vaissie, L.; Goodson, B. M. Using Frequency-Narrowed, Tunable Laser Diode Arrays with Integrated Volume Holographic Gratings for Spin-Exchange Optical Pumping at High Resonant Fluxes and Xenon Densities. Appl. Phys. B-Lasers Opt. 2012, 106, 775-788.
Link: https://link.springer.com/article/10.1007/s00340-012-4924-x
18)Nikolaou, P.; Whiting, N.; Eschmann, N. A.; Chaffee, K. E.; Goodson, B. M. Generation of Laser-Polarized Xenon Using Fiber-Coupled Laser-Diode Arrays Narrowed with Integrated Volume Holographic Gratings. J. Magn. Reson. 2009, 197, 249-254.
Link: https://www.sciencedirect.com/science/article/pii/S1090780708004217